Situated Interaction with a Virtual Human Perception, Action, and Cognition

Situierte Generierung Universität Potsdam, WiSe 2011/12 Anne Schumacher

Outline

- 1. Introduction
- 2. Modeling Dialogue Behaviour
- 3. Architectural Approach
- 4. Situated Interaction Management

Previous work - SFB 360

- 1996 -2005 in Bielefeld "Situated Artificial Communicators"
- Goal: to model what a person performs when, with a partner, he cooperatively solves a simple assembly task in a certain situation.
- Which intelligent abilities are necessary for the accomplishment of an assembly task?
 (with restriction to situated tasks)

Previous work - SFB 360

- Virtual human must be able to process...
 - acoustic (spoken) input
 - visual input of the partner
 - visual input of the objects involved
 - logics of what is going on in the situation
- Virtual human must be able to perform...
 - understanding of what he perceived
 - formulation of own utterances
 - planning of own actions
- Situatedness is a prerequisite for a more exact examination of the intelligence abilities!

Previous work - SFB 360

- setting in SFB 360:
 - human = instructor
 - communicator = executive constructor
- new project:
 - interaction is guided by the user's wish of building a certain assembly
 - <u>But:</u> roles (instructor/ constructor) can switch any time
 - → more interaction and higher flexibility

Motivation

- Modelling a virtual communicator can lead to a better understanding of what is needed in natural communication.
- Virtual humans can be used in collaboration tasks.
- Development of intelligent robots which can be used in various fields.

Setting

- Virtual reality: Max (Multimodal Assembly eXpert) and Baufix pieces are projected
- human is equipped with:
 - microphone
 - stereo glasses
 - optical position trackers
 - data gloves
- →Everything the human does is being perceived and processed by the system.

Kopp, Jung, Leßmann, Wachsmuth (2003) *Max – A Multimodal Assistant in Virtual Reality Construction*. Gesellschaft für Informatik KI, 4/03, Seite 11-17

Challenges for the Virtual Human

- goal detection & concretisation
- action planning
- communication vs. manipulation
- mixed initiative & turn taking
- failure detection/ correction
- constantly changing environment
- real-time processing and acting

2. Modeling Dialogue Behaviour

Interaction Model

Which information does one need to participate in the interaction?

layers of the Interaction Model:

- initiative
- turn
- goals
- content
- grounding
- discourse structure
- partner model

Interaction Moves (IM)

- interaction move can be *communicative* or *manipulative*
- For processing and planning IMs, the system needs lots of information \rightarrow *slots* of an interaction move:
 - 1. action
 - 2. goal
 - 3. content
 - 4. surface form
 - 5. turn-taking
 - 6. discourse function
 - 7. agent
 - 8. adressee

Filling the Interaction Model

What information do we put into those slots??

- 1. $action \rightarrow performative types$:
 - inform
 - query
 - request
 - propose
- 2. goal: specific goal of the IM, depending on the performative

Filling the Interaction Model

- 3. content: facts conveyed by the move
- 4. surface form: either the words spoken or the action performed
- 5. turn-taking: take, want, yield, give, keep
- 6. discourse function: start-segment, contribute, closesegment
- 7. agent: the one performing the IM
- 8. adressee: the one receiving the IM (if communicative)

Interaction	"Let us build a	"Ok."	"First, insert a bolt in
Move	propeller."		the middle of a bar."
Action	propose.action	inform.agree	request.order
Goal	(Achieve	(Perform	(Achieve (Connected \$s
	(Exists prop))	(Inform.agree))	\$b \$p1 \$p2))
Content	(Build prop	(Build prop	(Connect \$s \$b \$p1 \$p2)
	we)	we)	(Inst \$s bolt)
			(Inst \$b bar)
			(Center_hole \$b \$p2))
Surface form	<words>_t</words>	<words>_t</words>	<words>_t</words>
Turn-taking	take give	take keep	l give
Discourse	start-segment	contribute	start-segment
function	(DSP=prop)		(DSP=prop-s1)
Agent	User	Max	Max
Addressee	Max	User	User

Leßmann, Kopp, Wachsmuth (2006) "Situated Interaction with a Virtual Human – Perception, Action and Cognition" in Situated Communication, Berlin: Mouton de Gruyter, 2006, 287-323

3. Architectural Approach

Architecture

Memories and knowledge bases:

- storage of all initial and gained knowledge about the world and partner's beliefes
- storage of all that had been perceived and when it was added to the memory

• Perception:

- visual sensors
- infrared tracking of human's position
- data gloves
- auditory sensors & speech recognizer

Architecture

- Reasoning and Deliberation:
 - Belief-Desire-Intetion model (BDI) = control architecture for choosing from possible actions
 - beliefs = knowledge about the world
 - desires = actions that want to be performed/ states that want to be achieved
 - intention = current goal with plan to achieve it

Architecture

• Planning:

- plan library that stores all possible actions
- plans can be transformed into intentions

Acting and Reacting:

 acting area is in charge of triggering the performance of manipulative/ communicative actions

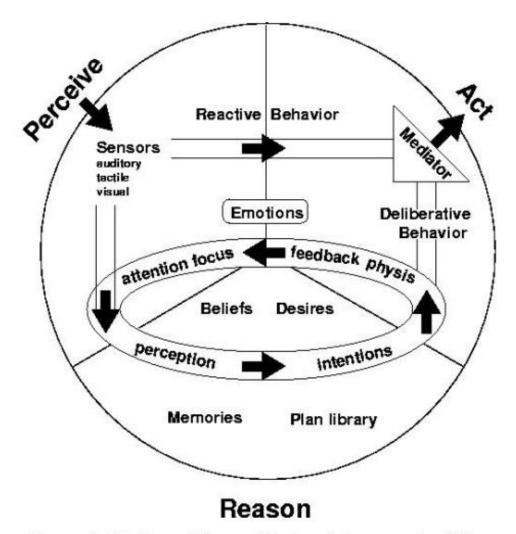


Figure 3: Outline of the architectural framework of Max.

Leßmann, Kopp, Wachsmuth (2006) "Situated Interaction with a Virtual Human – Perception, Action and Cognition" in Situated Communication, Berlin: Mouton de Gruyter, 2006, 287-323

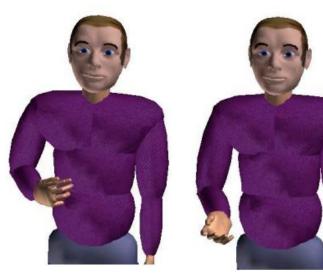
4. Situated Interaction Management

Dealing with the Input

- physical input:
 - touch detection
 - gesture recognition
- Speech input:
 - parsing
 - keyword-spotting
 - semantic analysis
 - reference resolution

Planning actions

What must be taken into account to plan an action?


- current goals
- discourse history
- performative of incoming action
- dominance relation between partners
- turn-taking model
- communicative vs. manipulative action
- direct reaction and interruption vs. analysing

Planning communicative moves

- content selection
 - deriving the performative from the intended act
 - determining information needed for the content
- discourse planning
 - determining the discourse function
 - lookup discourse history
- sentence planning & realization
 - generating referring expressions
 - constructing grammatical sentences
 - applying prosody

Physical moves

- →Physical behaviour is directly derived from communicative goals.
- turn-taking signals
- pointing gestures
- signals to underscore utterances:
 - eyebrow raise
 - head nod
 - posture shift
 - facial expressions

Summing up...

- 1. Input is being received by different sensors.
- 2. All information are being processed and stored in different data bases.
- 3. Based on the existing (initial and learned) data the agent can plan own actions.
- 4. Actions are either executed according to the plan or are being derived from the reactive behaviour.

Sources

- ➤ Leßmann, Kopp, Wachsmuth (2006) "Situated Interaction with a Virtual Human Perception, Action and Cognition" in Situated Communication (287-323), Berlin: Mouton de Gruyter
- ➤ Kopp, Jung, Leßmann, Wachsmuth (2003) *Max A Multimodal Assistant in Virtual Reality Construction*.

 Gesellschaft für Informatik KI, 4/03, Seite 11-17
- http://www.sfb360.uni-bielefeld.de
- http://www.techfak.uni-bielefeld.de/~skopp/max.html